Annals of Fuzzy Mathematics and Informatics

Volume x, No. x, (x 2023), pp. 1–x ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMII

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Fuzzy α -b-almost compact space

Anjana Bhattacharyya

Received 16 December 2023; Revised 2 January 2024; Accepted 31 January 2024

ABSTRACT. This paper deals with some applications of fuzzy α -b-open set. Here we introduce fuzzy α -b-almost compactness and characterize this concept via fuzzy net and prefilterbase. Also we introduce fuzzy regularly α -b-open set which characterizes fuzzy α -b-almost compactness. It is shown that fuzzy α -b-almost compactness implies fuzzy almost compactness and the converse is true only on fuzzy α -b-regular space.

2020 AMS Classification: 54A40, 03E72

Keywords: Fuzzy α -b-open set, Fuzzy α -b-regular space, Fuzzy regularly α -b-closed set, Fuzzy α -b-almost compact set (space), α b-adherent point of a prefilter-base, α b-cluster point of a fuzzy net.

Corresponding Author: Anjana Bhattacharyya (anjanabhattacharyya@hotmail.com)

1. Introduction

Fuzzy α -b-open set was introduced in [1] using fuzzy α -open set as a basic tool. After introducing fuzzy compactness by Chang [2], many mathematicians have engaged themselves to introduce different types of fuzzy compactness. In [3], fuzzy almost compactness was introduced.

In this paper, we introduce the concept of fuzzy α -b-almost compactness which is weaker than fuzzy almost compactness. Here we use fuzzy net [4] and prefilterbase [5] to characterize fuzzy α -b-almost compactness.

In recent time, different types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set are introduced and studied. A new branch of fuzzy topology is developed using these types of fuzzy sets. In this context we have to mention [6, 7, 8, 9, 10, 11].

2. Preliminaries

In 1965, Zadeh [12] introduced a fuzzy set A which is a function from a non-empty set X into the closed interval I = [0,1], i.e., $A \in I^X$. The support of a fuzzy set A in X, denoted by supp A, is defined by $supp A = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value $t \ (0 < t \le 1)$ will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The *complement* of a fuzzy set A in X, denoted by $1_X \setminus A$, is defined by $(1_X \setminus A)(x) = 1 - A(x)$ for each $x \in X$. For any two fuzzy sets A, B in X, $A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ while AqB means A is quasicoincident (q-coincident, for short) [4] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \not\subset B$ and A $\not AB$ respectively. The intersection and the union of two fuzzy sets A, B in X, denoted by $A \wedge B$ and $A \vee B$, are fuzzy sets in X defined by: for each $x \in X$,

$$(A \wedge B)(x) = min\{A(x), B(x)\}\$$
and $(A \vee B)(x) = max\{A(x), B(x)\}.$

Throughout this paper, (X, τ) or simply by X we shall mean an fts. For a fuzzy set A in X, clA and intA will stand for the fuzzy closure and the fuzzy interior of A respectively (See [2]). A fuzzy set A in X is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy point x_t , if there exists a fuzzy open set G in X such that $x_t \in G \leq A$. If, in addition, A is fuzzy open, then A is called a fuzzy open nbd of x_t (See [4]). A fuzzy set A is said to be a fuzzy q-nbd of a fuzzy point x_t in an fts X, if there is a fuzzy open set U in X such that $x_t qU < A$. If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd of x_t (See [4]).

A fuzzy set A in an fts (X, τ) is called a fuzzy α -open set in X, if $A \leq int(cl(intA))$. The complement of a fuzzy α -open set is called a fuzzy α -closed set in X. The union (the intersection) of all fuzzy α -open (resp. fuzzy α -closed) sets contained in (resp. containing) a fuzzy set A is called the fuzzy α -interior (resp. the fuzzy α -closure of A, denoted by $\alpha intA$ (resp. αclA) (See [13]).

Let (D, \geq) be a directed set and X be an ordinary set. Let J denote the collection of all fuzzy points in X. A function $S:D\to J$ is called a fuzzy net in X [4]. It is denoted by $\{S_n : n \in (D, \geq)\}$. A non empty family \mathcal{F} of fuzzy sets in X is called a prefilterbase on X, if (i) $0_X \notin \mathcal{F}$ and (ii) for any $U, V \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that $W \leq U \wedge V$ [5].

3. Fuzzy α -b-Open Sets : Some Results

In this section we recall some definitions and results from [1, 2, 3, 14, 15] for ready references. Also some properties of fuzzy α -b-open sets are discussed here.

Definition 3.1 ([1]). A fuzzy set A in an fts (X, τ) called a fuzzy α -b-open set in X, if $A \leq cl(\alpha int(clA))$.

The complement of a fuzzy α -b-open set is called a fuzzy α -b-closed set in X. The collection of all fuzzy α -b-open (resp. fuzzy α -b-closed) sets in X is denoted by $F\alpha bO(X)$ (resp. $F\alpha bC(X)$).

Definition 3.2 ([1]). Let (X,τ) be an fts and $A \in I^X$. Then the fuzzy α -b-closure of A, denoted by $\alpha bclA$, is defined by

$$\alpha bclA = \bigwedge \{U \in I^X : A \leq U, \ U \in F\alpha bC(X)\}$$

and the fuzzy α -b-interior of A, denoted by $\alpha bint A$, is defined by

$$\alpha bint A = \bigvee \{G : G \le A, \ G \in F\alpha bO(X)\}.$$

Definition 3.3 ([1]). A fuzzy set A in an fts (X, τ) is called a fuzzy α -b-nbd of a fuzzy point x_t in X, if there exists a fuzzy α -b-open set U in X such that $x_t \in U \leq A$. If, in addition, A is fuzzy α -b-open, then A is called a fuzzy α -b-open nbd of x_t .

Definition 3.4 ([1]). A fuzzy set A in an fts (X, τ) is called a fuzzy α -b-q-nbd of a fuzzy point x_t in X, if there exists a fuzzy α -b-open set U in X such that $x_tqU \leq A$. If, in addition, A is fuzzy α -b-open, then A is called a fuzzy α -b-open q-nbd of x_t .

Result 3.5 ([1]). The union (resp. intersection) of any two fuzzy α -b-open (resp. fuzzy α -b-closed) sets is also so.

Result 3.6 ([1]). $x_t \in \alpha bclA$ if and only if every fuzzy α -b-open q-nbd U of x_t , UqA.

Result 3.7. $\alpha bcl(\alpha bclA) = \alpha bclA$ for any fuzzy set A in an fts X.

Proof. Let $A \in I^X$. Then clearly, $A \leq \alpha bclA$. Thus we have

$$(3.1) \qquad \alpha bclA \le \alpha bcl(\alpha bclA).$$

Conversely, let $x_t \in \alpha bcl(\alpha bclA)$. Assume that $x_t \notin \alpha bclA$. Then there exists $U \in F\alpha bO(X)$ such that

$$(3.2) x_t q U, U \not q A.$$

Since $x_t \in \alpha bcl(\alpha bclA)$, $Uq(\alpha bclA)$. Thus there exists $y \in X$ such that $U(y) + (\alpha bclA)(y) > 1$. So U(y) + s > 1, where $s = (\alpha bclA)(y)$. Then $y_s \in \alpha bclA$ and y_sqU where $U \in F\alpha bO(X)$. By definition, UqA. This contradicts (3.2). Hence we get

$$(3.3) \qquad \alpha bcl(\alpha bclA) \le \alpha bclA.$$

Therefore combining (3.1) and (3.3), we get the result.

Result 3.8. $\alpha bcl(A \vee B) = \alpha bclA \bigvee \alpha bclB$ for any two fuzzy sets A, B in X.

Proof. It is clear that

(3.4)
$$\alpha bclA \bigvee \alpha bclB \leq \alpha bcl(A \vee B).$$

Conversely, let $x_t \in \alpha bcl(A \setminus B)$ and let U be any α -b-open q-nbd of x_t . Then clearly, $Uq(A \setminus B)$. Thus there exists $y \in X$ such that $U(y) + max\{A(y), B(y)\} > 1$. So either U(y) + A(y) > 1 or U(y) + B(y) > 1, i.e., either UqA or UqB. Hence either $x_t \in \alpha bclA$ or $x_t \in \alpha bclB$. Therefore $x_t \in \alpha bclA \vee \alpha bclB$.

Result 3.9. For any fuzzy set A in an fts (X, τ) ,

- (1) $\alpha bcl(1_X \setminus A) = 1_X \setminus \alpha bint A$,
- $(2)\alpha bint(1_X \setminus A) = 1_X \setminus \alpha bclA.$

Proof. (1) Let $x_t \in \alpha bcl(1_X \setminus A)$ and assume that $x_t \notin 1_X \setminus \alpha bintA$. Then $x_t q \alpha bintA$. Thus there exists a fuzzy α -b-open set B in X with $B \leq A$ such that $x_t q B$. So B is a fuzzy α -b-open q-nbd of x_t . By the assumption, $Bq(1_X \setminus A) \Rightarrow Aq(1_X \setminus A)$, which is absurd.

Conversely, let $x_t \in 1_X \setminus \alpha bintA$. Then $x_t \not \alpha bintA$. Thus $x_t \not \alpha U$ for any fuzzy α -b-open set U in X with $U \leq A$. So $x_t \in 1_X \setminus U$ which is fuzzy α -b-closed set in X with $1_X \setminus A \leq 1_X \setminus U$. Hence $x_t \in \alpha bcl(1_X \setminus A)$.

(2) Writing $1_X \setminus A$ for A in (1), we get the result.

Definition 3.10. Let A be a fuzzy set in an fts (X, τ) . A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A, if $\sup\{U(x): U \in \mathcal{U}\} = 1$ for each $x \in \operatorname{supp} A$ [14]. If each member of \mathcal{U} is fuzzy open (resp. fuzzy α -b-open), we call \mathcal{U} is a fuzzy open [14] (resp. fuzzy α -b-open) cover of A. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X [2].

Definition 3.11. A fuzzy cover \mathcal{U} of a fuzzy set A in an fts (X, τ) is said to have a finite (resp. finite proximate) subcover \mathcal{U}_0 , if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigvee \mathcal{U}_0 \geq A$ [14] (resp. $\bigvee \{clU : U \in \mathcal{U}_0\} \geq A$ [15]). In particular, if $A = 1_X$, we get $\bigvee \mathcal{U}_0 = 1_X$ (resp. $\bigvee \{clU : U \in \mathcal{U}_0\} = 1_X$ [3]).

Definition 3.12 ([3]). An fts (X, τ) is called a *fuzzy almost compact space*, if every fuzzy open cover has a finite proximate subcover.

4. Fuzzy α -b-almost compact space : Some characterizations

In this section, the concept of fuzzy α -b-almost compactness is introduced and studied by fuzzy α -b-open and fuzzy regularly α -b-open sets and characterize this space via fuzzy net and prefilter base.

Definition 4.1. A fuzzy set A in an fts (X, τ) is said to be a fuzzy α -b-almost compact set, if every fuzzy α -b-open cover \mathcal{U} of A has a finite α b-proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee \{\alpha bclU : U \in \mathcal{U}_0\} \geq A$. If, in addition, $A = 1_X$, we say that the fts X is fuzzy α -b-almost compact space.

Definition 4.2. A fuzzy point x_t in an fts X is said to belong to the αb -closure of a fuzzy set A in X, denoted by $x_t \in \alpha b$ -clA, if for every fuzzy α -b-open q-nbd U of x_t , $\alpha bclUqA$.

Definition 4.3. Let x_t be a fuzzy point in an fts (X, τ) . A prefilterbase \mathcal{F} on X is said to be:

- (i) αb -adhere at x_t , written as $x_t \in \alpha b$ -ad \mathcal{F} , if for each fuzzy α -b-open q-nbd U of x_t and each $F \in \mathcal{F}$, $Fq(\alpha bclU)$, i.e., $x_t \in \alpha b$ -clF, for each $F \in \mathcal{F}$,
- (ii) αb -converge to x_t , written as $\mathcal{F}\alpha b x_t$, if to each fuzzy α -b-open q-nbd U of x_t , there corresponds some $F \in \mathcal{F}$ such that $F \leq \alpha b c l U$.

Definition 4.4. Let x_t be a fuzzy point in an fts (X, τ) . A fuzzy net $\{S_n : n \in (D, \geq)\}$ is said to be:

- (i) αb -adhere at x_t , denoted by $x_t \in \alpha b$ -ad (S_n) , if for each fuzzy α -b-open q-nbd U of x_t and each $n \in D$, there exists $m \in D$ with $m \geq n$ such that $S_m q \alpha b c l U$,
- (ii) αb -converge to x_t , denoted by $S_n \alpha b x_t$, if for each fuzzy α -b-open q-nbd U of x_t , there exists $m \in D$ such that $S_n q \alpha b c l U$, for all $n \geq m (n \in D)$.

Theorem 4.5. For a fuzzy set A in an fts X, the following statements are equivalent: (1) A is a fuzzy α -b-almost compact set,

- (2) for every prefilterbase \mathcal{B} in X, $[\bigwedge \{\alpha bclB : B \in \mathcal{B}\}] \land A = 0_X$ implies that there exists a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{\alpha bint B : B \in \mathcal{B}_0\}$ $\not A$,
- (3) for any family \mathcal{F} of fuzzy α -b-closed sets in X with $\bigwedge \{F : F \in \mathcal{F}\} \wedge A = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{\alpha bint F : F \in \mathcal{F}_0\}$ $\not AA$,
- (4) every prefilterbase on X, each member of which is q-coincident with A, αb adheres at some fuzzy point in A.

Proof. (1) \Rightarrow (2): Suppose (1) holds and let \mathcal{B} be a prefilterbase in X such that $[\Lambda \{\alpha bclB : B \in \mathcal{B}\}] \wedge A = 0_X$. Then we have: for any $x \in supp A$,

$$[\bigwedge \{\alpha bclB : B \in \mathcal{B}\}](x) = 0$$

$$\Rightarrow 1 - [\bigwedge \{\alpha bclB(x) : B \in \mathcal{B}\}] = 1$$

$$\Rightarrow \bigvee [(1_X \setminus \alpha bclB)(x) : B \in \mathcal{B}] = 1$$

$$\Rightarrow \sup \{\alpha bint(1_X \setminus B)(x) : B \in \mathcal{B}\} = 1$$

$$\Rightarrow \{\alpha bint(1_X \setminus B) : B \in \mathcal{B}\} \text{ is a fuzzy } \alpha\text{-}b\text{-open cover of } A.$$

By (1), there exists a finite αb -proximate subcover of it for A

$$\{\alpha bint(1_X \setminus B_1), \alpha bint(1_X \setminus B_2), \cdots, \alpha bint(1_X \setminus B_n)\}.$$

Thus we get

Thus we get
$$A \leq \bigvee_{i=1}^{n} \alpha bcl(\alpha bint(1_X \setminus B_i))$$

$$= \bigvee_{i=1}^{n} [1_X \setminus \alpha bint(\alpha bclB_i)]$$

$$= 1_X \setminus \bigwedge_{i=1}^{n} \alpha bint(\alpha bclB_i).$$
Thus $\bigwedge_{i=1}^{n} \alpha bint(\alpha bclB_i) \leq 1_X \setminus A$. So $A \not A \bigwedge_{i=1}^{n} \alpha bint(\alpha bclB_i)$. Hence $A \not A \bigwedge_{i=1}^{n} \alpha bintB_i$.

(2) $\Rightarrow (1)$: Suppose (2) holds and assume that there exists a fuzzy α hope.

(2) \Rightarrow (1): Suppose (2) holds and assume that there exists a fuzzy α -b-open cover \mathcal{U} of A having no finite αb -proximate subcover for A. Then for every finite subcollection \mathcal{U}_0 of \mathcal{U} , there exists $x \in supp A$ such that $sup\{\alpha bcl U(x) : U \in \mathcal{U}_0\}$ A(x), i.e., $1 - \sup\{(\alpha bclU)(x) : U \in \mathcal{U}_0\} > 1 - A(x) \ge 0$, i.e., $\inf\{(1_X \setminus \alpha bclU)(x) : (1 - \alpha b$ $U \in \mathcal{U}_0$ > 0. Thus { $\bigwedge (1_X \setminus \alpha bclU) : \mathcal{U}_0 \text{ is a finite subcollection of } \mathcal{U}$ } (= \mathcal{B} , say)

is a prefilterbase in X. If there exists a finite subcollection $\{U_1, U_2, \cdots, U_n\}$ (say)

of \mathcal{U} such that $\bigwedge_{i=1}^{n} \alpha bint(1_X \setminus \alpha bclU_i)$ $\not A$, then Result 3.7, we have

$$A \leq 1_{X} \setminus \bigwedge_{i=1}^{n} \alpha bint(1_{X} \setminus \alpha bclU_{i})$$

$$= \bigvee_{i=1}^{n} [1_{X} \setminus \alpha bint(1_{X} \setminus \alpha bclU_{i})]$$

$$= \bigvee_{i=1}^{n} \alpha bcl(\alpha bclU_{i})$$

$$= \bigvee_{i=1}^{n} \alpha b c l U_i.$$

Thus \mathcal{U} has a finite αb -proximate subcover for A, contradicts our hypothesis. So for every finite subcollection $\{\bigwedge_{U \in \mathcal{U}_1} (1_X \setminus \alpha bclU), \cdots, \bigwedge_{U \in \mathcal{U}_k} (1_X \setminus \alpha bclU)\}$ of \mathcal{B} , where $\mathcal{U}_1, \cdots, \mathcal{U}_k$ are finite subset of \mathcal{U} , we have $[\bigwedge_{U \in \mathcal{U}_1} \bigvee_{v \in \mathcal{U}_k} \alpha bint(1_X \setminus \alpha bclU)]qA$. By

(2), $[\bigwedge \alpha bcl(1_X \setminus \alpha bclU)] \land A \neq 0_X$. Hence there exists $x \in supp A$, such that

$$\inf_{U \in \mathcal{U}} [\alpha bcl(1_X \setminus \alpha bclU)](x) > 0$$

$$\Rightarrow 1 - \inf_{U \in \mathcal{U}} [\alpha bcl(1_X \setminus \alpha bclU)](x) < 1$$

$$\Rightarrow \sup_{U \in \mathcal{U}} [1_X \setminus \alpha bcl(1_X \setminus \alpha bclU)](x) < 1$$

$$\Rightarrow \sup_{U \in \mathcal{U}} U(x) \le \sup_{U \in \mathcal{U}} \alpha bint(\alpha bclU)(x) < 1.$$
This contradicts that \mathcal{U} is a fuzzy α - b -open cover of A .

 $(1) \Rightarrow (3)$: Suppose (1) holds and let \mathcal{F} be a family of fuzzy α -b-closed sets in Xsuch that $\bigwedge \{F: F \in \mathcal{F}\} \bigwedge A = 0_X$. Then for each $x \in supp A$ and for each positive integer n, there exists some $F_n \in \mathcal{F}$ such that $F_n(x) < 1/n$, i.e., $1 - F_n(x) > 1 - 1/n$, i.e., $\sup [(1_X \setminus F)(x)] = 1$. Thus $\{1_X \setminus F : F \in \mathcal{F}\}$ is a fuzzy α -b-open cover of A.

By (1), there exists a finite subcollection
$$\mathcal{F}_0$$
 of \mathcal{F} such that $A \leq \bigvee_{F \in \mathcal{F}_0} \alpha bcl(1_X \setminus F)$.
So $1_X \setminus A \geq 1_X \setminus \bigvee_{F \in \mathcal{F}_0} \alpha bcl(1_X \setminus F) = \bigwedge_{F \in \mathcal{F}_0} (1_X \setminus \alpha bcl(1_X \setminus F)) = \bigwedge_{F \in \mathcal{F}_0} \alpha bintF$. Hence $A \not = \bigwedge_{F \in \mathcal{F}_0} \alpha bintF$, where \mathcal{F}_0 is a finite subcollection of \mathcal{F} .

- (3) \Rightarrow (2): Suppose (3) holds and let \mathcal{B} be a prefilterbase in X such that $[\Lambda \{\alpha bclB : B \in \mathcal{B}\}] \wedge A = 0_X$. Then the family $\mathcal{F} = \{\alpha bclB : B \in \mathcal{B}\}$ is a family of fuzzy α -b-closed sets in X with $(\bigwedge F) \wedge A = 0_X$. Thus by (3), there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $[\Lambda \{\alpha bint(\alpha bclB) : B \in \mathcal{B}_0\}] /qA$. So $(\bigwedge_{B\in\mathcal{B}_0}\alpha bintB)\not qA.$
- $(1) \Rightarrow (4)$: Suppose (1) holds and let \mathcal{F} be a prefilterbase in X, each member of which is q-coincident with A. Assume that \mathcal{F} do not αb -adhere at any fuzzy point in A. Then for each $x \in supp A$, there exists $n_x \in \mathcal{N}$ (the set of all natural numbers) such that $x_{1/n_x} \in A$. Thus there are a fuzzy α -b-open set $U^x_{n_x}$ and a member $F^x_{n_x}$ of $\mathcal F$ such that $x_{1/n_x}qU^x_{n_x}$ and $\alpha bclU^x_{n_x}$ $\not AF^x_{n_x}$. So $U^x_{n_x}(x) > 1 - 1/n_x$. Hence $\sup\{U^x_n(x): n \in \mathcal N, n \geq n_x\} = 1$. Therefore $\{U^x_n: n \in \mathcal N, n \geq n_x\} = 1$. supp A forms a fuzzy α -b-open cover of A. By (1), there exist finitely many points

$$x_1, x_2, \dots, x_k \in supp A$$
 and $n_1, n_2, \dots, n_k \in \mathcal{N}$ such that $A \leq \bigvee_{i=1}^k \alpha bcl U_{n_{x_i}}^{x_i}$. Choose

 $F \in \mathcal{F}$ such that $F \leq \bigwedge_{i=1}^k F_{n_i}^{x_i}$. Then $F \not A[\bigvee_{i=1}^k \alpha b c l U_{n_{x_i}}^{x_i}]$, i.e., $F \not AA$, a contradiction.

 $(4) \Rightarrow (1)$: Suppose (4) holds and assume that there exist a fuzzy α -b-open cover \mathcal{U} of A such that for every finite subset \mathcal{U}_0 of \mathcal{U} , $\bigvee \{\alpha bclU : U \in \mathcal{U}_0\} \not\geq A$. Then $\mathcal{F} = \{1_X \setminus \bigvee_{U \in \mathcal{U}_0} \alpha bclU : \mathcal{U}_0 \text{ is a finite subset of } \mathcal{U}\}$ is a prefilterbase on X such that

FqA for each $F \in \mathcal{F}$. By (4), \mathcal{F} αb -adheres at some fuzzy point $x_t \in A$. As \mathcal{U} is a fuzzy cover of A, $\sup_{U \in \mathcal{U}} U(x) = 1$. Thus there exists $U_0 \in \mathcal{U}$ such that $U_0(x) > 1 - t$,

i.e., $x_t q U_0$. As $x_t \in \alpha b$ -ad \mathcal{F} and $1_X \setminus \alpha bcl U_0 \in \mathcal{F}$, we have $\alpha bcl U_0 q(1_X \setminus \alpha bcl U_0)$, a contradiction.

Theorem 4.6. For a fuzzy set A in an fts X, Consider the following statements:

- (1) every fuzzy net in A α b-adheres at some fuzzy point in A,
- (2) every fuzzy net in A has a αb -convergent fuzzy subnet,
- (3) every prefilterbase in A αb -adheres at some fuzzy point in A,
- (4) for every family $\{B_{\alpha} : \alpha \in \Lambda\}$ of non-null fuzzy sets with $[\bigwedge_{\alpha \in \Lambda} \alpha b \text{-} cl B_{\alpha}] \land A =$

 0_X , there is a finite subset Λ_0 of Λ such that $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \wedge A = 0_X$,

- (5) A is fuzzy α -b-almost compact set. Then (1), (2) and (3) are equivalent, and (3) \Rightarrow (4) and (4) \Rightarrow (5).
- Proof. (1) \Rightarrow (2): Suppose (1) holds and let $\{S_n:n\in(D,\geq)\}$ be a fuzzy net in A, where (D,\geq) is a directed set, αb -adhere at a fuzzy point $x_\alpha\in A$. Let Q_{x_α} denote the set of the fuzzy α -b-closures of all fuzzy α -b-open q-nbds of x_α . For any $B\in Q_{x_\alpha}$, we can choose some $n\in D$ such that S_nqB . Let E denote the set of all ordered pairs (n,B) with the property that $n\in D$, $B\in Q_{x_\alpha}$ and S_nqB . Then (E,\gg) is a directed set, where $(m,C)\gg(n,B)$ if and only if $m\geq n$ in D and $C\leq B$. Thus $T:(E,\gg)\to(X,\tau)$ given by $T(n,B)=S_n$ is a fuzzy subnet of $\{S_n:n\in(D,\geq)\}$. Let V be any fuzzy α -b-open q-nbd of x_α . Then there is $n\in D$ such that that $(n,\alpha bclV)\in E$. Thus $S_nq(\alpha bclV)$. Now, for any $(m,U)\gg(n,\alpha bclV)$, $T(m,U)=S_mqU\leq \alpha bclV$. So $T(m,U)q(\alpha bclV)$. Hence $T\alpha bx_\alpha$.
- $(2) \Rightarrow (1)$. Suppose (2) holds and assume that a fuzzy net $\{S_n : n \in (D, \geq)\}$ does not αb -adhere at a fuzzy point x_{α} . Then there is a fuzzy α -b-open q-nbd U of x_{α} and an $n \in D$ such that $S_m \not h(\alpha bclU)$ for all $m \geq n$. Thus obviously no fuzzy subnet of the fuzzy net can αb -converge to x_{α} . This is a contradiction.
- $(1) \Rightarrow (3)$: Suppose (1) holds and let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a prefilterbase in A. For each $\alpha \in \Lambda$, choose a fuzzy point $x_{F_{\alpha}} \in F_{\alpha}$ and construct the fuzzy net $S = \{x_{F_{\alpha}} : F_{\alpha} \in \mathcal{F}\}$ in A with (\mathcal{F}, \gg) as domain, where for two members $F_{\alpha}, F_{\beta} \in \mathcal{F}, F_{\alpha} \gg F_{\beta}$ if and only if $F_{\alpha} \leq F_{\beta}$. By (1), the fuzzy net S αb -adheres at some fuzzy point x_t $(0 < t \leq 1) \in A$. Then for any fuzzy α -b-open q-nbd U of x_t and any $F_{\alpha} \in \mathcal{F}$, there exists $F_{\beta} \in \mathcal{F}$ such that $F_{\beta} \gg F_{\alpha}$ and $x_{F_{\beta}}q(\alpha bcl U)$. Thus $F_{\beta}q(\alpha bcl U)$. So $F_{\alpha}q(\alpha bcl U)$. Hence \mathcal{F} αb -adheres at x_t .
- (3) \Rightarrow (1): Suppose (3) holds and let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net in A. Consider the prefilterbase $\mathcal{F} = \{T_n : n \in D\}$ generated by the net, where $T_n = \{S_m : m \in D, m \geq n\}$. Then by (3), there exists a fuzzy point $a_\alpha \in A$ such that \mathcal{F} αb -adheres at a_α . Thus for each fuzzy α -b-open q-nbd U of a_α and each

 $F \in \mathcal{F}, Fq(\alpha bclU), \text{ i.e., } (\alpha bclU)qT_n \text{ for all } n \in D. \text{ So the given fuzzy net } \alpha b\text{-adheres}$

(3) \Rightarrow (4): Suppose (3) holds and let $\mathcal{B} = \{B_{\alpha} : \alpha \in \Lambda\}$ be a family of fuzzy sets in X such that for every finite subset Λ_0 of Λ , $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \wedge A \neq 0_X$. Then

 $\mathcal{F} = \{ (\bigwedge_{\alpha} B_{\alpha}) \land A : \Lambda_0 \text{ is a finite subset of } \Lambda \} \text{ is a prefilterbase in } A. By (3), \mathcal{F} \}$

 αb -adheres at some fuzzy point $a_t \in A$ (0 < $t \le 1$). Thus for each $\alpha \in \Lambda$ and each fuzzy α -b-open q-nbd U of a_t , $B_{\alpha}q(\alpha bclU)$, i.e., $a_t \in \alpha b$ - clB_{α} for each $\alpha \in \Lambda$. So $(\bigwedge \alpha b - cl B_{\alpha}) \bigwedge A \neq 0_X.$

 $(4) \Rightarrow (5)$: Suppose (4) holds and let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy α -b-open cover of a fuzzy set A. Then by (4), $A \wedge [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_{\alpha})] = A \wedge [1_X \setminus \bigvee_{\alpha \in \Lambda} U_{\alpha}] = 0_X$. If for some $\alpha \in \Lambda$, $1_X \setminus \alpha bclU_{\alpha} = 0_X$, then we are done. If $1_X \setminus \alpha bclU_{\alpha} (=B_{\alpha}, A) = 0$.

say) $\neq 0_X$, then for each $\alpha \in \Lambda$, $\mathcal{B} = \{B_\alpha : \alpha \in \Lambda\}$ is a family of non-null fuzzy sets. We show that $\bigwedge_{\alpha \in \Lambda} \alpha b \cdot cl B_\alpha \leq \bigwedge_{\alpha \in \Lambda} (1_X \setminus U_\alpha)$. In fact, let x_t $(0 < t \leq 1)$

be a fuzzy point such that $x_t \in \alpha b - clB_{\alpha} = \alpha b - cl(1_X \setminus \alpha b clU_{\alpha})$. If $x_t q U_{\alpha}$, then $\alpha bclU_{\alpha}q(1_X\setminus \alpha bclU_{\alpha})$, which is absurd. Thus $x_t\not dU_{\alpha}\Rightarrow x_t\in 1_X\setminus U_{\alpha}$. So $[\bigwedge \alpha b-1]$

$$clB_{\alpha}] \wedge A \leq A \bigwedge [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_{\alpha})] = 0_X$$
. By (4), there exists a finite subset Λ_0 of Λ such that $[\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}] \bigwedge A = 0_X$, i.e., $A \leq 1_X \setminus \bigwedge_{\alpha \in \Lambda_0} B_{\alpha} = \bigvee_{\alpha \in \Lambda_0} (1_X \setminus B_{\alpha}) = \bigvee_{\alpha \in \Lambda_0} \alpha bclU_{\alpha}$. Hence (5) holds.

Definition 4.7. A fuzzy set A in an fts (X, τ) is said to be fuzzy regularly α -bopen, if $A = \alpha bint(\alpha bclA)$. The complement of such a set is called fuzzy regularly α -b-closed.

Note 4.8. It is clear from definitions that fuzzy regularly α -b-open set is fuzzy α b-open set. But the converse need not be true, as it follows from the next example.

Example 4.9. Let $X = \{a, b\}, \tau = \{0_X, 1_X, A\}, \text{ where } A(a) = 0.5, A(b) = 0.6.$ Then (X,τ) is an fts. Here $F\alpha bO(X)=\{0_X,1_X,U\}$, where $U\nleq 1_X\setminus A$ and thus $F\alpha bC(X) = \{0_X, 1_X, 1_X \setminus U\}, \text{ where } 1_X \setminus U \not\geq A.$ Consider the fuzzy set B defined by B(a) = B(b) = 0.6. Then clearly B is fuzzy α -b-open set, but not fuzzy regularly α -b-open set.

Definition 4.10. A fuzzy point x_{α} in X is said to be a fuzzy αb -cluster point of a prefilterbase \mathcal{B} , if $x_{\alpha} \in \alpha bclB$, for all $B \in \mathcal{B}$. If, in addition, $x_{\alpha} \in A$ for a fuzzy set A, then \mathcal{B} is said to have a fuzzy αb -cluster point in A.

Theorem 4.11. A fuzzy set A in an fts (X,τ) is fuzzy α -b-almost compact if and only if for each prefilterbase \mathcal{F} in X which is such that for each set of finitely many members F_1, F_2, \cdots, F_n from \mathcal{F} and for any fuzzy regularly α -b-closed set C containing A, one has $(F_1 \wedge \cdots \wedge F_n)qC$, \mathcal{F} has a fuzzy αb -cluster point in A.

Proof. Suppose A is a fuzzy α -b-almost compact set and let \mathcal{F} be a prefilterbase in X such that

$$[\bigwedge \{\alpha bclF : F \in \mathcal{F}\}] \wedge A = 0_X.$$

Let $x \in supp A$. Consider any $n \in \mathcal{N}$ (the set of all natural numbers) such that 1/n < A(x), i.e., $x_{1/n} \in A$. Then by (4.1), $x_{1/n} \notin \alpha bcl F_x^n$ for some $F_x^n \in \mathcal{F}$. Thus there exists a fuzzy α -b-open q-nbd U_x^n of $x_{1/n}$ such that U_x^n $/qF_x^n$. Now $U_x^n(x) >$ $1 - 1/n \Rightarrow \sup\{U_x^n(x) : 1/n < A(x), n \in \mathcal{N}\} = 1 \Rightarrow \mathcal{U} = \{U_x^n : x \in \operatorname{supp}A, n \in \mathcal{N}\}$ forms a fuzzy α -b-open cover of A such that for U_x^n , there exists $F_x^n \in \mathcal{F}$ with $U_x^n \not h F_x^n$. Since A is fuzzy α -b-almost compact, there exist finitely many members

$$U_{x_1}^{n_1}, \dots, U_{x_k}^{n_k}$$
 of \mathcal{U} such that $A \leq \bigvee_{i=1}^k \alpha bcl U_{x_i}^{n_i} = \alpha bcl (\bigvee_{x_i}^k U_{x_i}^{n_i})$ (by Result 3.8) (= U , say). Now $F_{x_1}^{n_1}, \dots, F_{x_k}^{n_k} \in \mathcal{F}$ such that $U_{x_i}^{n_i} \not A F_{x_i}^{n_i}$ for $i = 1, 2, \dots, k$. Now U is a fuzzy regularly α -b-closed set containing A such that $U \not A (F_{x_1}^{n_1} \bigwedge \dots \bigwedge F_{x_k}^{n_k})$.

Conversely, let \mathcal{B} be a prefilterbase in X having no fuzzy αb -cluster point in A. Then by the hypothesis, there is a fuzzy regularly α -b-closed set C containing Asuch that for some finite subcollection \mathcal{B}_0 of \mathcal{B} , $(\bigwedge \mathcal{B}_0)$ A. Thus $(\bigwedge \mathcal{B}_0)$ A. By $(2) \Rightarrow (1)$ of Theorem 4.5, A is fuzzy α -b-almost compact set.

From Theorem 4.5, Theorem 4.6 and Theorem 4.11, we have the characterizations of fuzzy α -b-almost compact space as follows.

Theorem 4.12. For an fts X, the following statements are equivalent:

- (1) X is fuzzy α -b-almost compact,
- (2) every fuzzy net in X αb -adheres at some fuzzy point in X,
- (3) every fuzzy net in X has a αb -convergent fuzzy subnet,
- (4) every prefilterbase in X αb -adheres at some fuzzy point in X,
- (5) for every family $\{B_{\alpha} : \alpha \in \Lambda\}$ of non-null fuzzy sets with $[\bigwedge_{\alpha \in \Lambda} \alpha b cl B_{\alpha}] = 0_X$,

there is a finite subset Λ_0 of Λ such that $(\bigwedge B_{\alpha}) = 0_X$,

- (6) for every prefilterbase \mathcal{B} in X with $\bigwedge \{ \alpha bclB : B \in \mathcal{B} \} = 0_X$, there is a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $\bigwedge \{\alpha bint B : B \in \mathcal{B}_0\} = 0_X$,
- (7) for any family \mathcal{F} of fuzzy α -b-closed sets in X with $\bigwedge \mathcal{F} = 0_X$, there exists a finite subcollection \mathcal{F}_0 of \mathcal{F} such that $\bigwedge \{\alpha bintF : F \in \mathcal{F}_0\} = 0_X$.

Theorem 4.13. An fts X is fuzzy α -b-almost compact if and only if for any collection $\{F_{\alpha}: \alpha \in \Lambda\}$ of fuzzy α -b-open sets in X having finite intersection property $\bigwedge \{\alpha bcl F_{\alpha} : \alpha \in \Lambda\} \neq 0_X.$

Proof. Suppose X is a fuzzy α -b-almost compact space and let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a collection of fuzzy α -b-open sets in X with finite intersection property. Assume that $\bigwedge \{ \alpha bcl F_{\alpha} : \alpha \in \Lambda \} = 0_X$. Then $\{ 1_X \setminus \alpha bcl F_{\alpha} : \alpha \in \Lambda \}$ is a fuzzy α -bopen cover of X. Thus by the hypothesis, there exists a finite subset Λ_0 of Λ such that $1_X = \bigvee \{ \alpha bcl(1_X \setminus \alpha bclF_\alpha) : \alpha \in \Lambda_0 \} = \bigvee \{ 1_X \setminus \alpha bint(\alpha bclF_\alpha) : \alpha \in \Lambda_0 \} \le$ $\bigvee\{1_X\setminus F_\alpha:\alpha\in\Lambda_0\}=1_X\setminus\bigwedge_{\alpha\in\Lambda_0}F_\alpha\Rightarrow\bigwedge_{\alpha\in\Lambda_0}F_\alpha=0_X$ which contradicts the fact

that \mathcal{F} has finite intersection property.

Conversely, suppose the necessary condition holds and assume that X is not fuzzy α -b-almost compact space. Then there is a fuzzy α -b-open cover $\mathcal{F} = \{F_\alpha : \alpha \in \Lambda\}$ of X such that for every finite subset Λ_0 of Λ , $\bigvee \{\alpha bclF_\alpha : \alpha \in \Lambda_0\} \neq 1_X$. Thus $1_X \setminus \bigvee \{\alpha bclF_\alpha : \alpha \in \Lambda_0\} \neq 0_X$. So $\bigwedge_{\alpha \in \Lambda_0} (1_X \setminus \alpha bclF_\alpha) \neq 0_X$. Hence $\{1_X \setminus \alpha bclF_\alpha : \alpha \in \Lambda\}$ is a collection of fuzzy α -b-open sets with finite intersection property. By

 $\alpha \in \Lambda$ is a collection of fuzzy α -b-open sets with finite intersection property. By the hypothesis, $\bigwedge_{\alpha \in \Lambda} \alpha bcl(1_X \setminus \alpha bclF_{\alpha}) \neq 0_X$, i.e., $1_X \setminus \bigvee_{\alpha \in \Lambda} \alpha bint(\alpha bclF_{\alpha}) \neq 0_X$, i.e.,

 $\bigvee_{\alpha \in \Lambda} \alpha bint(\alpha bcl F_{\alpha}) \neq 1_{X}. \text{ Therefore } \bigvee_{\alpha \in \Lambda} F_{\alpha} \neq 1_{X}. \text{ This is a contradiction as } \mathcal{F} \text{ is a fuzzy } \alpha \text{-}b\text{-open cover of } X.$

Definition 4.14. Let $\{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy α -b-open sets in X, i.e., for each member n of a directed set (D, \geq) , S_n is a fuzzy α -b-open set in X. A fuzzy point x_{α} in X is said to be a fuzzy α b-cluster point of the fuzzy net, if for every $n \in D$ and every fuzzy α -b-open q-nbd V of x_{α} , there exists $m \in D$ with $m \geq n$ such that $S_m qV$.

Theorem 4.15. An fts X is fuzzy α -b-almost compact if and only if every fuzzy net of fuzzy α -b-open sets in X has a fuzzy α b-cluster point in X.

Proof. Suppose X is fuzzy α -b-almost compact and let $\mathcal{U} = \{S_n : n \in (D, \geq)\}$ be a fuzzy net of fuzzy α -b-open sets in a fuzzy α -b-almost compact space X. For each $n \in D$, let $F_n = \alpha bcl[\bigvee \{S_m : m \in D \text{ and } m \geq n\}]$. Then $\mathcal{F} = \{F_n : n \in D\}$ is a family of fuzzy α -b-closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge \{\alpha bint F : F \in \mathcal{F}_0\} \neq 0_X$. By (1) \Rightarrow (7) of Theorem 4.12, $\bigwedge_{n \in D} F_n \neq 0_X$. Let $x_\alpha \in \bigwedge_{n \in D} F_n$. Then $x_\alpha \in F_n$ for all $n \in D$. Thus for any fuzzy α -b-open q-nbd A of x_α and any $n \in D$, $Aq[\bigvee \{S_m : m \geq n\}]$. So there exists some $m \in D$ with $m \geq n$ and AqS_m . Hence x_α is a fuzzy α b-cluster point of \mathcal{U} .

Conversely, suppose the necessary condition holds and let \mathcal{F} be a collection of fuzzy α -b-closed sets in X with the condition that for every finite subcollection \mathcal{F}_0 of \mathcal{F} , $\bigwedge \{\alpha bintF : F \in \mathcal{F}_0\} \neq 0_X$. Let \mathcal{F}^* denote the family of all finite intersections of members of \mathcal{F} directed by the relation '>>' such that for $F_1, F_2 \in \mathcal{F}^*$, $F_1 > F_2$ if and only if $F_1 \leq F_2$. Let $F^* = \alpha bintF$ for each $F \in \mathcal{F}^*$. Then $F^* \neq 0_X$. Consider the fuzzy net $\mathcal{U} = \{F^* : F \in (\mathcal{F}^*, >)\}$ of non-null fuzzy α -b-open sets of X. By the hypothesis, \mathcal{U} has a fuzzy αb -cluster point, say x_{α} . We claim that $x_{\alpha} \in \bigwedge \mathcal{F}$. In fact, let $F \in \mathcal{F}$ be arbitrary and A be any fuzzy α -b-open q-nbd of x_{α} . Since $F \in \mathcal{F}^*$ and x_{α} is a fuzzy αb -cluster point of \mathcal{U} , there exists $G \in \mathcal{F}^*$ such that G > F (i.e., $G \leq F$) and $G^*qA \Rightarrow GqA \Rightarrow FqA \Rightarrow x_{\alpha} \in \alpha bclF = F$ for each $F \in \mathcal{F} \Rightarrow x_{\alpha} \in \bigwedge \mathcal{F} \Rightarrow \bigwedge \mathcal{F} \neq 0_X$. By (7) \Rightarrow (1) of Theorem 4.12, X is a fuzzy α -b-almost compact space.

Definition 4.16. A fuzzy cover \mathcal{U} by fuzzy α -b-closed sets of an fts (X, τ) is called a fuzzy α b-cover of X, if for each fuzzy point x_{α} $(0 < \alpha < 1)$ in X, there exists $U \in \mathcal{U}$ such that U is a fuzzy α -b-open nbd of x_{α} .

Theorem 4.17. An fts (X, τ) is fuzzy α -b-almost compact if and only if every fuzzy α b-cover of X has a finite subcover.

Proof. Suppose X is fuzzy α -b-almost compact and let \mathcal{U} be any fuzzy α b-cover of X. Then for each $n \in \mathcal{N}$ (the set of all natural numbers) with n > 1, there exist $U_x^n \in \mathcal{U}$ and a fuzzy α -b-open set V_x^n in X such that $x_{1-1/n} \leq V_x^n \leq U_x^n$. Thus $V_x^n(x) \ge 1 - 1/n$. So $\sup\{V_x^n(x) : n \in \mathcal{N}\} = 1$. Hence $\mathcal{V} = \{V_x^n : x \in X, n \in \mathcal{N}, n > 1\}$ 1) is a fuzzy α -b-open cover of X. As X is fuzzy α -b-almost compact, there exist finitely many points $x_1, x_2, \dots, x_m \in X$ and $n_1, n_2, \dots, n_m \in N \setminus \{1\}$ such that $1_X = \bigvee_{k=1}^m \alpha bcl V_{x_k}^{n_k} \leq \bigvee_{k=1}^m \alpha bcl U_{x_k}^{n_k} = \bigvee_{k=1}^m U_{x_k}^{n_k}$.

$$1_X = \bigvee_{k=1}^{m} \alpha b c l V_{x_k}^{n_k} \le \bigvee_{k=1}^{m} \alpha b c l U_{x_k}^{n_k} = \bigvee_{k=1}^{m} U_{x_k}^{n_k}.$$

Conversely, suppose the necessary condition holds and let \mathcal{U} be fuzzy α -b-open cover of X. For any fuzzy point x_{α} $(0 < \alpha < 1)$ in X, as $\sup U(x) = 1$, there exists $U_{x_{\alpha}} \in \mathcal{U}$ such that $U_{x_{\alpha}}(x) \geq \alpha \ (0 < \alpha < 1)$. Then $\mathcal{V} = \{\alpha \dot{bcl}U : U \in \mathcal{U}\}$ is a fuzzy αb -cover of X and the rest is clear .

The following theorem gives a necessary condition for an fts to be fuzzy α -b-almost compact.

Theorem 4.18. If an fts X is fuzzy α -b-almost compact, then every prefilterbase on X with at most one αb -adherent point is αb -convergent

Proof. Suppose X is fuzzy α -b-almost compact and let \mathcal{F} be a prefilterbase with at most one αb -adherent point in X. Then by Theorem 4.12, \mathcal{F} has at least one αb adherent point in X. Let x_{α} be the unique αb -adherent point of \mathcal{F} and assume that \mathcal{F} do not αb -converge to x_{α} . Then for some fuzzy α -b-open q-nbd U of x_{α} and for each $F \in \mathcal{F}$, $F \nleq \alpha bclU$. Thus $F \land \{1_X \setminus \alpha bclU\} \neq 0_X$. So $\mathcal{G} = \{F \land (1_X \setminus \alpha bclU) : AbclU\} \neq 0_X$. $F \in \mathcal{F}$ is a prefilterbase in X. Hence \mathcal{G} has a αb -adherent point y_t (say) in X. Now $\alpha bclU$ $\not qG$ for all $G \in \mathcal{G}$ so that $x_{\alpha} \neq y_t$. Again, for each fuzzy α -b-open q-nbd Vof y_t and each $F \in \mathcal{F}$, $\alpha bclVq(F \land (1_X \setminus \alpha bclU))$. Then $\alpha bclVqF$. Thus y_t is a fuzzy αb -adherent point of \mathcal{F} , where $x_{\alpha} \neq y_t$. This contradicts the fact that x_{α} is the only fuzzy αb -adherent point of \mathcal{F} .

Some results on fuzzy α -b-almost compactness of an fts are given by the following theorem.

Theorem 4.19. Let (X,τ) be an fts and $A \in I^X$. Then the following statements are true:

- (1) if A is fuzzy α -b-almost compact, then so is $\alpha bclA$,
- (2) the union of two fuzzy α -b-almost compact sets is also so,
- (3) if X is fuzzy α -b-almost compact, then every fuzzy regularly α -b-closed set A in X is fuzzy α -b-almost compact.

Proof. (1) Suppose A is fuzzy α -b-almost compact and let \mathcal{U} be a fuzzy α -b-open cover of $\alpha bclA$. Then \mathcal{U} is also a fuzzy α -b-open cover of A. As A is fuzzy α -b-almost compact, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that

$$A \le \bigvee \{\alpha bclU : U \in \mathcal{U}_0\} = \alpha bcl\{\bigvee U : U \in \mathcal{U}_0\}.$$

Thus we have

$$\alpha bclA \leq \alpha bcl\{\alpha bcl[\bigvee \{U : U \in \mathcal{U}_0\}]\}\$$
$$= \alpha bcl\{\bigvee U : U \in \mathcal{U}_0\}\$$

$$= \bigvee \{ \alpha b c l U : U \in \mathcal{U}_0 \}.$$

So $\alpha bclA$ is fuzzy α -b-almost compact.

- (2) Obvious.
- (3) Suppose X is fuzzy α -b-almost compact and let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy α -b-open cover of a fuzzy regularly α -b-closed set A in X. Then for each $x \notin supp A$, A(x) = 0, i.e., $(1_X \setminus A)(x) = 1$. Thus $\mathcal{U} \bigvee \{(1_X \setminus A)\}$ is a fuzzy α -b-open cover of X. Since X is fuzzy α -b-almost compact, there are finitely many members U_1, U_2, \cdots, U_n in \mathcal{U} such that

$$1_X = (\alpha bclU_1 \bigvee \cdots \bigvee \alpha bclU_n) \bigvee \alpha bcl(1_X \setminus A).$$

We claim that $\alpha bintA \leq \alpha bclU_1 \bigvee \cdots \bigvee \alpha bclU_n$. If not, there exists a fuzzy point $x_t \in \alpha bintA$, but $x_t \notin (\alpha bclU_1 \bigvee \cdots \bigvee \alpha bclU_n)$, i.e., $t > max\{(\alpha bclU_1)(x), \cdots, (\alpha bclU_n)(x)\}$. As $1_X = (\alpha bclU_1 \bigvee \cdots \bigvee \alpha bclU_n) \bigvee \alpha bcl(1_X \setminus A)$, we have

$$[\alpha bcl(1_X \setminus A)](x) = 1.$$

Then $1 - \alpha bint A(x) = 1$. Thus $\alpha bint A(x) = 0$. So $x_t \notin \alpha bint A$. This is a contradiction. Hence by Results 3.7 and 3.8, we get

$$A = \alpha bcl(\alpha bint A) \le \alpha bcl(\alpha bcl U_1 \bigvee \cdots \bigvee \alpha bcl U_n) = \alpha bcl U_1 \bigvee \cdots \bigvee \alpha bcl U_n.$$

Therefore A is a fuzzy α -b-almost compact set.

5. Mutual relationship

Here we establish the mutual relationship between fuzzy almost compactness [3] and fuzzy α -b-almost compactness. Then it is shown that fuzzy α -b-almost compactness implies fuzzy almost compactness, but converse is true in fuzzy α -b-regular space [1]. It is also established that fuzzy α -b-almost compactness remains invariant under fuzzy α -b-irresolute function [1].

Since for any fuzzy set A in an fts X, $\alpha bclA \leq clA$ (as every fuzzy closed set is fuzzy α -b-closed [1]), we can state the following theorem easily.

Theorem 5.1. Every fuzzy α -b-almost compact space is fuzzy almost compact.

To get the converse we have to recall the following definition and theorem for ready references.

Definition 5.2 ([1]). An fts (X, τ) is said to be *fuzzy* α -*b-regular*, if for each fuzzy α -*b*-closed set F in X and each fuzzy point x_{α} in X with $x_{\alpha}q(1_X \setminus F)$, there exists a fuzzy open set U in X and a fuzzy α -*b*-open set V in X such that $x_{\alpha}qU$, $F \leq V$ and $U \not AV$.

Theorem 5.3 ([1]). An fts (X, τ) is fuzzy α -b-regular iff every fuzzy α -b-closed set is fuzzy closed.

Theorem 5.4. A fuzzy α -b-regular, fuzzy almost compact space X is fuzzy α -b-almost compact.

Proof. Let \mathcal{U} be a fuzzy α -b-open cover of a fuzzy α -b-regular, fuzzy almost compact space X. Then by Theorem 5.3, \mathcal{U} is a fuzzy open cover of X. As X is fuzzy almost compact, there is a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\bigvee\{clU:U\in\mathcal{U}_0\}=0$

 $\bigvee \{ \alpha b c l U : U \in \mathcal{U}_0 \}$ (by Theorem 5.3) = 1_X . Thus X is fuzzy α -b-almost compact space.

Next we recall the following definition and theorem for ready references.

Definition 5.5 ([1]). A function $f: X \to Y$ is said to be *fuzzy* α -*b*-irresolute, if the inverse image of every fuzzy α -*b*-open set in Y is fuzzy α -*b*-open in X.

Theorem 5.6 ([1]). For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is fuzzy α -b-irresolute,
- (2) $f(\alpha bclA) \leq \alpha bcl(f(A))$ for all $A \in I^X$,
- (3) for each fuzzy point x_{α} in X and each fuzzy α -b-open q-nbd V of $f(x_{\alpha})$ in Y, there exists a fuzzy α -b-open q-nbd U of x_{α} in X such that $f(U) \leq V$.

Theorem 5.7. Fuzzy α -b-irresolute image of a fuzzy α -b-almost compact space is fuzzy α -b-almost compact.

cover of X. By fuzzy α -b-almost compactness of X, $\bigvee_{i=1}^{\kappa} \alpha b c l U_{x_i}^{n_i} = 1_X$ for some finite

subcollection $\{U_{x_1}^{n_1}, \cdots, U_{x_k}^{n_k}\}$ of \mathcal{U} . So we get

$$1_Y = f(\bigvee_{i=1}^k \alpha bclU_{x_i}^{n_i}) = \bigvee_{i=1}^k f(\alpha bclU_{x_i}^{n_i}) \le \bigvee_{i=1}^k \alpha bcl(f(U_{x_i}^{n_i})).$$

Then by (1) \Rightarrow (2) of Theorem 5.6, $\bigvee_{i=1}^k \alpha bcl(f(U_{x_i}^{n_i})) \leq \bigvee_{i=1}^k \alpha bclV_{x_i}^{n_i}$. Hence Y is a fuzzy α -b-almost compact space.

6. Conclusions

This paper is a continuation of [1]. The main goal of this paper is to establish the various results of fuzzy α -b-open sets and fuzzy covering properties. We further want to establish the inter-relations of various types of fuzzy covering properties.

Acknowledgements. I express my sincere gratitude to the referees for their valuable remark.

References

- [1] Anjana Bhattacharyya, Fuzzy α -b-regularity in a fuzzy topological space, Ann. Fuzzy Math. Inform. Accepted for Publication.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.

- [3] A. DiConcillio and G. Gerla, Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems 13 (1984) 187–192.
- [4] Pao Ming Pu and Ying Ming Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl. 76 (1980) 571–599.
- [5] R. Lowen, Convergence in fuzzy topological spaces, General Topology and Its Applications 10 (1979) 147–160.
- [6] J. G. Lee, G. Şenel, P. K. Lim, J. Kim and K. Hur, Octahedron sets, Ann. Fuzzy Math. Inform. 19 (3) (2020) 211–238.
- [7] G. Senel and N. Çağman, Soft closed sets on soft bitopological space, Journal of New Results in Science 3 (5) (2014) 57–66.
- [8] G. Şenel and N. Çağman, Soft topological subspaces, Ann. Fuzzy Math.Inform. 10 (4) (2015) 525–535.
- [9] G. Senel, A new approach to Hausdorff space theory via the soft sets, Mathematical Problems in Engineering 1–6. Doi:10.1155/2016/2196743.
- [10] G. Şenel, Soft topology generated by L-Soft sets, Journal of New Theory 24 (4) (2018) 88–100.
- [11] G. Şenel, J. G. Lee and K. Hur, Distance and similarity measures for octahedron sets and their applications to MCGDM problems, Mathematics 8 (2020) 16–90.
- [12] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.
- [13] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303–308.
- [14] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34 (1990) 117–124.
- [15] M. N. Mukherjee and S. P. Sinha, Almost compact fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems 38 (1990) 389–396.

ANJANA BHATTACHARYYA (anjanabhattacharyya@hotmail.com)

Department of Mathematics Victoria Institution (College) 78 B, A.P.C. Road Kolkata - 700009, India